基于改进YOLOv5的烟草采摘机器人视觉检测模型研究
DOI:
CSTR:
作者:
作者单位:

郑州大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Visual Detection Model of Tobacco Picking Robot Based on Improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,智能化农业在提升生产效率和减少资源浪费方面展现出巨大潜力。为解决烟草采摘中复杂背景和多目标遮挡带来的识别准确性和效率问题,研究提出了一种基于改进YOLOv5的烟草采摘机器人视觉检测模型,该模型结合双目成像技术与通道注意力机制,同时引入多尺度特征增强金字塔和实例归一化模块以提高模型的泛化能力。实验结果表明,改进的YOLOv5模型在识别准确率上达92%,复杂背景下准确率提高至90%,识别时间缩短至0.2秒,显著优于传统模型。研究结果表明,所提出的模型在烟草采摘任务中具有更高的实用价值和应用潜力,可以为自动化烟草采摘提供高效、精准的解决方案。

    Abstract:

    In recent years, intelligent agriculture has shown great potential in improving the production efficiency and reducing the waste of resources. To solve the complex background and tobacco picking in the recognition accuracy and efficiency, the paper proposed a improved YOLOv5 of tobacco picking robot visual recognition model, the model combines binocular imaging technology and channel attention mechanism, at the same time introduce multi-scale features enhanced pyramid and instance normalization module to improve the generalization ability of the model. The experimental results show that the improved YOLOv5 model achieves 92% recognition accuracy, improves the accuracy to 90% in the complex background, and reduces the recognition time to 0.2 seconds, which is significantly better than the traditional model. The results show that the proposed model has higher utility and application potential in tobacco picking tasks and can provide efficient and precise solutions for automated tobacco picking.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-27
  • 最后修改日期:2025-06-23
  • 录用日期:2025-06-25
  • 在线发布日期:
  • 出版日期:
文章二维码