结合连续小波与SCF-AE网络的牵引变压器异常声纹检测
DOI:
CSTR:
作者:
作者单位:

国能朔黄铁路发展责任有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国能朔黄铁路发展有限责任公司科技创新项目(SHTL-24-42)


Traction Transformer Acoustic Anomaly Detection Based on SCF-AE network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    牵引变压器是保障牵引供电系统正常运行的关键设备。既有变压器声纹检测方法基于故障样本驱动,在声纹样本稀缺的重载铁路牵引变压器状态检测场景下适用性受限。针对该问题,提出结合连续小波与SCF-AE网络的牵引变压器异常声纹检测方法。采用连续小波变换,获取了牵引变压器声纹的时频特征图。通过在自编码器中引入空间通道融合卷积,提升网络的特征学习能力的同时降低了其计算复杂度。SCF-AE网络在训练阶段对牵引变压器正常声纹样本进行了压缩重构。在检测阶段,基于该网络,通过分析输入样本的重构误差是否超过阈值来判断是否存在异常。经试验测试,SCF-AE在数据集上实现了88.17%的精确率和100%的召回率,对单个样本的平均推理时长仅为13.3ms,对比当前既有方法其准确性和计算复杂度均具有优势。

    Abstract:

    Traction transformers are regarded as critical devices for ensuring the reliable operation of traction power supply systems. Existing acoustic fingerprint-based detection methods are driven by fault samples, so their applicability is limited in condition monitoring scenarios of heavy-haul railway traction transformers where fault samples are scarce. To address this issue, an abnormal acoustic fingerprint detection method for traction transformers is proposed by integrating continuous wavelet transform with a spatial-channel fusion autoencoder (SCF-AE) network. Time-frequency feature maps of transformer acoustic fingerprints are obtained by continuous wavelet transform. The feature learning capability of the network is enhanced and its computational complexity is reduced by incorporating spatial-channel fusion convolution into the autoencoder. During training, normal acoustic fingerprints of traction transformers are compressed and reconstructed by the SCF-AE network. During detection, anomalies are identified by determining whether the reconstruction error of an input sample exceeds a predefined threshold. A precision of 88.17% and a recall of 100% are achieved by the proposed SCF-AE method on the dataset, with an average inference time of only 13.3 ms per sample. Superior accuracy and computational efficiency are demonstrated compared with existing methods.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-22
  • 最后修改日期:2025-06-26
  • 录用日期:2025-06-26
  • 在线发布日期:
  • 出版日期:
文章二维码