基于迭代博弈反馈-势场蚁群算法的飞行器平滑轨迹避障控制
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Smooth trajectory obstacle avoidance control of aircraft based on iterative game feedback potential field ant colony algorithmZhang Yong1,2 ,Wang Yufeng3 ,YangHong3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞行器动态势场环境中,障碍物在状态转移时会引入时变势场梯度,形成混沌吸引域,增加了避障难度。而且,飞行器的欠驱动特性导致其运动学系统存在非完整约束,由此导致的混沌行为会使轨迹出现非平滑跃迁。故本研究提出基于迭代博弈反馈-势场蚁群算法的飞行器平滑轨迹避障控制方法。首先,构建飞行器运动学模型,并确定其动力学约束条件;然后,明确静态/动态障碍物,并设计引力场(目标吸引)和斥力场(障碍物排斥)函数,构造环境总势场函数,实现全局目标导向与局部避障间的动态平衡,突破混沌吸引域的拓扑限制,提高避障成功率;最后,在环境总势场函数限制下,从路径最短性、平滑性和安全性3个方面建立平滑轨迹避障控制目标函数,利用势场蚁群算法求解目标函数。当势场梯度突变或蚁群信息素分布不均时,路径易出现高频抖动,加剧飞行器动力学系统的混沌行为,影响轨迹平滑性。故本研究引入迭代博弈反馈机制平滑势场梯度变化,并通过优化信息素分布减少路径曲率突变,抑制飞行器动力学混沌行为,使轨迹收敛至稳定平滑解,获得能够满足轨迹平滑性与避障控制需求的飞行器最优轨迹。实验结果显示:应用该方法生成的飞行器轨迹可以与障碍物保持安全距离,飞行器避障成功率为100%,飞行器轨迹平滑度最大值可达到0.95。

    Abstract:

    In the dynamic potential field environment of aircraft, obstacles introduce time-varying potential field gradients during state transitions, forming chaotic attraction domains and increasing the difficulty of obstacle avoidance. Moreover, the underactuated characteristics of the aircraft result in incomplete constraints in its kinematic system, leading to chaotic behavior that causes non smooth transitions in the trajectory. Therefore, this study proposes a smooth trajectory obstacle avoidance control method for aircraft based on iterative game feedback potential field ant colony algorithm. Firstly, construct the kinematic model of the aircraft and determine its dynamic constraints; Then, identify static/dynamic obstacles, design gravitational field (target attraction) and repulsive field (obstacle repulsion) functions, construct the total potential field function of the environment, achieve dynamic balance between global target orientation and local obstacle avoidance, break through the topological limitations of chaotic attraction domain, and improve the success rate of obstacle avoidance; Finally, under the constraint of the overall potential field function of the environment, a smooth trajectory obstacle avoidance control objective function is established from three aspects: shortest path, smoothness, and safety. The potential field ant colony algorithm is used to solve the objective function. When the gradient of the potential field suddenly changes or the distribution of ant colony pheromones is uneven, the path is prone to high-frequency jitter, exacerbating the chaotic behavior of the aircraft dynamics system and affecting the smoothness of the trajectory. Therefore, this study introduces an iterative game feedback mechanism to smooth the gradient changes in the potential field, and reduces the abrupt changes in path curvature by optimizing the distribution of pheromones, suppresses the chaotic behavior of aircraft dynamics, and converges the trajectory to a stable smooth solution, obtaining the optimal trajectory of the aircraft that can meet the requirements of trajectory smoothness and obstacle avoidance control. The experimental results show that the aircraft trajectory generated by this method can maintain a safe distance from obstacles, with a 100% success rate in obstacle avoidance. The maximum smoothness of the aircraft trajectory can reach 0.95.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-15
  • 最后修改日期:2025-07-03
  • 录用日期:2025-07-08
  • 在线发布日期:
  • 出版日期:
文章二维码