基于FL优化联合学习的WSN隐私数据入侵节点时空图异常检测方法
DOI:
CSTR:
作者:
作者单位:

中国科学院计算技术研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省纪律检查委员会浙江省公权力大数据监督应用(二期)项目(E432059)


A WSN privacy data intrusion node spatiotemporal graph anomaly detection method based on FL optimized joint
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    跨WSN子网的时空数据呈现强非独立同分布特性,且子网间容易遭受针对性攻击,如标签翻转攻击、后门攻击,降低WSN的安全性。为了解决这些问题,提出了基于FL优化联合学习的异常检测方法。各WSN子网基于本地数据生成隐私化时空图训练集,并采用FL优化联合时空滑动平均法对数据进行平滑处理,以消除传感器噪声干扰,抑制数据突变与异常抖动。对滑动时空窗口内的数据进行最大最小值归一化处理,确保数据分布均匀性,从而提升后续异常检测的准确性。构建基于FL优化联合学习的异常检测框架,聚合WSN中边缘节点的联邦平均参数,建立异常检测FL优化联合学习目标,通过联邦子域微调机制和加密参数共享,结合差分隐私与动态权重聚合,在适配非独立同分布时空数据的同时抑制针对性攻击,实现安全精准的跨域异常检测。实验结果表明,该方法在标签翻转攻击、后门攻击模式下节点空间分布熵最大值分别为0.8和0.6,射频信号标识模拟误差分别为0.7、0.3,与实验指标一致,说明使用该方法检测结果精准,能够有效保障WSN隐私数据的传输与存储。

    Abstract:

    The spatiotemporal data across WSN subnets exhibits strong non independent and identically distributed characteristics, and subnets are susceptible to targeted attacks such as label flipping attacks and backdoor attacks, which reduce the security of WSN. To address these issues, an anomaly detection method based on FL optimized joint learning has been proposed. Each WSN subnet generates a private spatiotemporal graph training set based on local data, and uses FL optimization joint spatiotemporal sliding average method to smooth the data to eliminate sensor noise interference, suppress data mutations and abnormal jitter. Normalize the maximum and minimum values of the data within the sliding spatiotemporal window to ensure uniform data distribution and improve the accuracy of subsequent anomaly detection. Build an anomaly detection framework based on FL optimized joint learning, aggregate the federated average parameters of edge nodes in WSN, establish the FL optimized joint learning objective for anomaly detection, and use the federated subdomain fine-tuning mechanism and encrypted parameter sharing, combined with differential privacy and dynamic weight aggregation, to adapt to non independent and identically distributed spatiotemporal data while suppressing targeted attacks, achieving secure and accurate cross domain anomaly detection. The experimental results show that the maximum values of node spatial distribution entropy under label flipping attack and backdoor attack modes are 0.8 and 0.6, respectively, and the simulation errors of RF signal identification are 0.7 and 0.3, which are consistent with the experimental indicators. This indicates that the detection results of this method are accurate and can effectively guarantee the transmission and storage of WSN privacy data.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-13
  • 最后修改日期:2025-07-01
  • 录用日期:2025-07-02
  • 在线发布日期:
  • 出版日期:
文章二维码