基于改进的SDP点对称特征融合图像的电机故障诊断
DOI:
CSTR:
作者:
作者单位:

陕西工业职业技术学院 电气工程学院

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

陕西工业职业技术学院自然科学类科研项目(2024YKYB-001)


Enhanced Symmetrized Dot Pattern Feature Fusion Imaging for Motor Fault Diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统时频分析方法在复杂工况下电机故障信号处理中存在的抗噪能力弱、特征区分度低等问题,提出一种基于改进对称点模式特征融合图像的电机故障诊断方法。采用变分模态分解对故障信号进行自适应分解,结合粒子群优化算法动态调整SDP镜像对称平面旋转角θ、时间间隔参数l、角度放大因子ξ等关键参数,生成多模态信号融合的SDP图像;并构建轻量化卷积神经网络模型对电机故障诊断进行了研究。以变频三相异步电机为实验对象,对正常、匝间短路、气隙偏心、转子断条四类工况采集1200组振动信号样本进行验证;结果表明,所提方法在故障诊断中实现了100%的准确率,优于支持向量机的97.85%、随机森林95.24%,在-6dB强噪声环境下仍保持98.76%的准确率,验证了其鲁棒性。该方法通过参数优化与特征融合提升了噪声环境下的诊断可靠性,为电机实时监测与智能诊断提供了有效解决方案。

    Abstract:

    Aiming at the problems of weak anti-noise ability and low feature discrimination of traditional time-frequency analysis method in motor fault signal processing under complex working conditions, a motor fault diagnosis method based on improved symmetric point mode feature fusion image is proposed. The variational mode decomposition is used to adaptively decompose the fault signal, and the particle swarm optimization algorithm is used to dynamically adjust the key parameters such as the rotation angle θ of the symmetric plane of the SDP image, the time interval parameter l, and the angle amplification factor ξ to generate the SDP image of multi-modal signal fusion. A lightweight convolutional neural network model is constructed to study motor fault diagnosis. Taking the variable frequency three-phase asynchronous motor as the experimental object, 1200 sets of vibration signal samples were collected for verification under four working conditions : normal, inter-turn short circuit, air gap eccentricity and rotor broken bar. The results show that the proposed method achieves 100 % accuracy in fault diagnosis, which is better than 97.85 % of support vector machine and 95.24 % of random forest. It still maintains 98.76 % accuracy in-6dB strong noise environment, which verifies its robustness. This method improves the diagnostic reliability in noisy environment through parameter optimization and feature fusion, and provides an effective solution for real-time monitoring and intelligent diagnosis of motors.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-07
  • 最后修改日期:2025-06-20
  • 录用日期:2025-06-20
  • 在线发布日期:
  • 出版日期:
文章二维码