lp范数惩罚比例仿射投影广义最大相关熵算法
DOI:
CSTR:
作者:
作者单位:

西南交通大学 电气工程学院

作者简介:

通讯作者:

中图分类号:

TN911.72

基金项目:

教育部重点实验室开放课题基金(2022ML0015)


Lp-Norm-Penalized Proportionate Affine Projection Generalized Maximum Correntropy Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非高斯噪声下的稀疏系统辨识,提出了lp范数惩罚比例仿射投影广义最大相关熵(LP-PAPGMC)算法;该算法结合了广义最大相关熵对脉冲噪声的鲁棒性和仿射投影在应对强相关输入信号时的适应性,以及比例矩阵和lp范数惩罚约束所带给算法针对稀疏系统的性能提升;考虑到LP-PAPGMC算法采用恒定核宽度进行权值更新,存在收敛速度与稳态偏差之间的固有权衡,采用变核宽度策略动态调整该算法核宽度,进而提出了LP-VKWPAPGMC算法;通过在高斯噪声和混合高斯噪声下对不同稀疏度的系统进行辨识,验证了LP-PAPGMC算法和其变核宽度算法相较于其他相关仿射投影算法具有更快的收敛速度和更低的稳态偏差;在混合高斯噪声和混合α-稳定噪声下的声学回声消除场景中,LP-PAPGMC算法和LP-VKWPAPGMC算法相较于其他仿射投影算法展现出性能优势。

    Abstract:

    For the sparse system identification under non-Gaussian noise, the lp-norm-penalized proportionate affine projection generalized maximum correntropy (LP-PAPGMC) algorithm is proposed; This algorithm integrates the robustness of generalized maximum correntropy against impulsive noise and the adaptability of affine projection for handling highly correlated input signals, along with the enhancements in performance for sparse systems provided by the proportionate matrix and lp-norm-penalized constraint; Considering the inherent trade-off between convergence speed and steady-state bias due to the use of a constant kernel width for weight updates in the LP-PAPGMC algorithm, a variable kernel width strategy is utilized to dynamically adjust the kernel width of the algorithm, leading to the development of the LP-VKWPAPGMC algorithm; By identifying systems of varying sparsity under Gaussian noise and mixed Gaussian noise conditions, it has been validated that the LP-PAPGMC algorithm and its variable kernel width version exhibit faster convergence rates and lower steady-state biases compared to other related affine projection algorithms; In acoustic echo cancellation scenarios under mixed Gaussian noise and mixed α-stable noise, the LP-PAPGMC and LP-VKWPAPGMC algorithms exhibit superior performance compared to other affine projection algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-06
  • 最后修改日期:2025-05-07
  • 录用日期:2025-05-07
  • 在线发布日期:
  • 出版日期:
文章二维码