基于SMDP模型的车联网任务卸载和资源分配研究
DOI:
CSTR:
作者:
作者单位:

南京理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Task Offloading and Resource Allocation for Telematics Based on SMDP Modeling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能网联汽车技术和车载应用的发展产生了许多异构的延迟敏感型和计算密集型任务,卸载处理任务的方式为降低车辆计算负担带来了机遇和挑战;由于不同类型的任务对通信和计算资源的需求存在差异,不同制造商制造的智能车辆配备不同数量的计算资源,如何充分利用异质车辆的资源以实现异构任务的计算卸载和资源分配是一大难题;鉴于此,提出了云端、边缘节点和车载节点联合应用的车辆边缘计算系统模型,并将此模型构建成半马尔可夫决策过程模型,通过强化学习的智能算法计算最优分配策略,实现合理的资源分配;仿真结果表明,所提出的方案的长期平均收益相比自适应阈值算法和贪婪算法的收益分别提高了43.9%和86.52%,有效降低处理任务的时延和能耗,提升用户的服务质量。

    Abstract:

    The development of smart connected vehicle technology and in-vehicle applications generates many heterogeneous latency-sensitive and compute-intensive tasks, and the way of offloading processing tasks brings opportunities and challenges to reduce the computational burden of vehicles.Due to the differences in the demand for communication and computational resources for different types of tasks, smart vehicles made by different manufacturers are equipped with different amounts of computational resources, and how to make full use of the resources of heterogeneous vehicles in order to realize the computational offloading and resource allocation for heterogeneous tasks is a major challenge.In light of this, a model for a vehicle edge computing system that combines the use of cloud, edge, and vehicle nodes is proposed. This model is built as a semi-Markov decision process model, and an intelligent algorithm with reinforcement learning determines the best allocation strategy to achieve a reasonable resource allocation. The simulation results demonstrate that the suggested scheme's long-term average benefit is higher than that of the adaptive threshold algorithm and greedy algorithm by 43.9% and 86.52%, respectively. This effectively reduces processing task delays and energy consumption while improving user service quality.

    参考文献
    相似文献
    引证文献
引用本文

杜书怡,雷爱国.基于SMDP模型的车联网任务卸载和资源分配研究计算机测量与控制[J].,2025,33(12):312-320.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-27
  • 最后修改日期:2025-08-30
  • 录用日期:2025-05-07
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码