一种面向安全生产过程的知识图谱故障检测模型
DOI:
CSTR:
作者:
作者单位:

河北省军民融合发展促进中心

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

河北省军民融合发展研究课题(HB24JMRH002)


A Knowledge Graph Fault Detection Model for Safety Production Process
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑安全生产过程的多样化和分布需求,提出一种知识图谱故障检测模型。该模型采用互信息和嵌入变量相似性构建安全生产过程知识图谱,提出基于图注意力网络全局特征提取和双向长短期记忆网络的局部特征提取方法,并设计了子块融合协同预测模型。通过实验证明:所提模型不仅具有良好的实际应用性,检测精度和误报率优于现有基准方法,还具有更有效的参数敏感性,为安全生产过程故障检测提供了技术支持。

    Abstract:

    Considering the diversity and distributed requirements of safety production processes, a fault detection based on knowledge graph is proposed. A knowledge graph based on mutual information and embedded variable similarity is constructed. A global feature extraction based on graph attention networks and a local feature extraction based on bidirectional long short-term memory networks is proposed, along with the design of a sub-block fusion collaborative prediction model and fault detection. The experiments show that the proposed model not only has good practical applicability, but also outperforms existing benchmark methods in terms of detection accuracy and false alarm rate. Moreover, it has more effective parameter sensitivity, providing technical support for fault detection in safety production processes.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-24
  • 最后修改日期:2025-05-07
  • 录用日期:2025-05-09
  • 在线发布日期:
  • 出版日期:
文章二维码