基于量化压缩感知的雷达视频回波信号联合检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

西安思源学院校长(自然科学类重点项目)(项目编号:XASYB24ZD04)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在公路交通环境中,雷达视频回波信号具有数据量大、噪声干扰多以及目标动态变化快等特点,若不及时进行稀疏表示与信号压缩,冗余信息会掩盖目标的关键特征,会导致导致雷达视频回波信号联合检测性能下降。对此,研究基于量化压缩感知的雷达视频回波信号联合检测方法。结合量化技术与压缩感知理论,通过稀疏表示和量化编码压缩雷达回波信号,能够有效分离交通目标(如车辆、行人)与背景噪声,减少大量冗余信息。并针对压缩处理后的信号采用联合检测算法进行重构与提取,以实现雷达视频回波信号联合检测。实验结果表明,该方法信号波动幅度为[-2dB-1.5dB]与实验指标一致,且在信号频率为[-10MHz-10MHz]时,信号波动幅度也与实验指标一致,说明使用该方法检测结果精准。在低信噪比为18dB时,耗时最长仅为10s,说明使用该方法具有高效实时处理效率。检测准确率达到96%,能够有效提升公路交通场景中目标检测的精度与效率。

    Abstract:

    In the highway traffic environment, radar video echo signals have the characteristics of large data volume, high noise interference, and fast target dynamic changes. If sparse representation and signal compression are not carried out in a timely manner, redundant information will mask the key features of the target, leading to a decrease in the joint detection performance of radar video echo signals. Research on a joint detection method for radar video echo signals based on quantized compressive sensing. By combining quantization technology with compressive sensing theory, sparse representation and quantization encoding are used to compress radar echo signals, which can effectively separate traffic targets (such as vehicles and pedestrians) from background noise and reduce a large amount of redundant information. And a joint detection algorithm is used to reconstruct and extract the compressed signal, in order to achieve joint detection of radar video echo signals. The experimental results show that the signal fluctuation amplitude of this method is consistent with the experimental indicators, ranging from -2dB to 1.5dB. Moreover, the signal fluctuation amplitude is also consistent with the experimental indicators when the signal frequency is between -10MHz and 10MHz, indicating that the detection results using this method are accurate. At a low signal-to-noise ratio of 18dB, the longest processing time is only 10s, indicating that this method has high real-time processing efficiency. The detection accuracy reaches 96%, which can effectively improve the accuracy and efficiency of object detection in highway traffic scenes.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-20
  • 最后修改日期:2025-05-07
  • 录用日期:2025-05-07
  • 在线发布日期:
  • 出版日期:
文章二维码