基于改进YOLOv8n的接触网螺栓识别与定位方法
DOI:
CSTR:
作者:
作者单位:

西南交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省科技厅重大专项(2022ZDZX0002);四川内江高新技术产业开发区管理委员会西南交通大学产学研合作资助课题(R110223H01022)


Bolt Recognition and Localization Method for Catenary Systems Based on Improved YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的接触网螺栓识别方式效率较低,且现有的螺栓定位方法研究较少;针对上述问题,提出了一种结合改进YOLOv8n模型和RGB-D相机的接触网螺栓识别与定位方法;对目标识别模型YOLOv8n进行了创新改进,增加小目标检测层以增强特征融合;引入SE注意力机制突出关键特征,提高模型检测精度;引入BiFPN模块提升多尺度特征融合效率;采用轻量级SCDown卷积降低模型参数量且保证检测性能;引入WIoU-v3损失函数加速模型收敛并提升回归精度;基于螺栓的对称特性和图像处理技术,提出新的方法来实现螺栓定位,结合目标识别模型和RGB-D相机深度信息,以此获取螺栓的三维中心坐标和空间姿态;实验结果表明,改进后的识别模型在测试集上的mAP0.5达到90.7%,比原模型提高2.1%,并减少了8.0%的参数量,螺栓定位方法也能够实现对接触网螺栓的有效定位,验证了该方法的可靠性。

    Abstract:

    Traditional methods for catenary bolt recognition are inefficient, and there is limited research on existing bolt localization approaches. To address these issues, a novel bolt recognition and localization method is proposed, combining an improved YOLOv8n model with an RGB-D camera. The YOLOv8n object detection model is enhanced by adding a small target detection layer to improve feature fusion; an SE attention mechanism is introduced to highlight key features and improve detection accuracy; a BiFPN module is incorporated to enhance multi-scale feature fusion efficiency; lightweight SCDown convolutions are used to reduce the model's parameter count while maintaining detection performance; and the WIoU-v3 loss function is adopted to accelerate model convergence and improve regression precision. Based on the symmetrical properties of bolts and image processing techniques, a new method is developed for bolt localization, integrating the object recognition model with depth information from the RGB-D camera to obtain the bolt's 3D center coordinates and spatial pose. Experimental results show that the improved recognition model achieves an mAP@0.5 of 90.7% on the test set, which is 2.1% higher than the original model and reduces the parameter count by 8.0%. The bolt localization method effectively locates catenary bolts, validating the reliability of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

吴守烨,孟祥印,肖世德,卢秀杰,迟元斌.基于改进YOLOv8n的接触网螺栓识别与定位方法计算机测量与控制[J].,2025,33(12):262-269.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2025-01-17
  • 录用日期:2025-01-17
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码