基于改进YOLOv8的驾驶路面标识检测与识别方法研究
DOI:
CSTR:
作者:
作者单位:

江南大学物联网工程学院

作者简介:

通讯作者:

中图分类号:

U495.1;TP391.41;TP183

基金项目:


Research on Driving Road Sign Detection and Recognition Method Based on Improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着自动驾驶技术的迅速发展,对路面标识的高效检测与准确识别变得尤为关键。针对路面标志类繁多、形状复杂、同时检测精度易受到天气、光照等环境因素的影响的问题,提出了一种基于改进YOLOv8的驾驶路面标识检测与识别的算法模型;在骨干网络部分新增多项式核引入模块(Poly Kernel Inception Module,PKI),使其能够从图像数据中提取更加复杂的特征;在颈部网络部分引入了一种可变形注意力机制(Deformable Attention,DA),使模型能更灵活地关注图像的相关部分,适应输入数据的特定空间结构;将原本的损失函数CIOU替换为Inner-CIOU,增强模型的泛化能力,并提高检测精度;经过实验检测:改进后的YOLOv8网络平均精度均值mAP50和mAP50-95相较原生网络分别提升了4.4 %和6.7 %,检测速度也达到了71 Hz,证明了算法的有效性。

    Abstract:

    With the rapid development of autonomous driving technology, the efficient detection and accurate recognition of road surface markings have become particularly critical. To address challenges such as the diversity and complexity of road markings, as well as the susceptibility of detection accuracy to environmental factors like weather and lighting, a driving road marking detection and recognition algorithm model based on an improved YOLOv8 framework is proposed. In the backbone network, a Polynomial Kernel Introduction (PKI) module is incorporated to enable the extraction of more complex features from image data. In the neck network, a Deformable Attention (DA) mechanism is introduced to allow the model to flexibly focus on relevant parts of the image, adapting to the specific spatial structures of input data. Additionally, the original CIOU loss function is replaced with Inner-CIOU to enhance the model's generalization ability and improve detection accuracy. Experimental results demonstrate that the improved YOLOv8 network achieves a 4.4 % and 6.7 % improvement in mAP50 and mAP50-95, respectively, compared to the original network, with a detection speed of 71 Hz, verifying the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

殷翰文,嵇小辅.基于改进YOLOv8的驾驶路面标识检测与识别方法研究计算机测量与控制[J].,2025,33(12):254-261.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-28
  • 最后修改日期:2025-01-02
  • 录用日期:2025-01-06
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码