基于无监督学习的电路板安装缺陷检测
DOI:
CSTR:
作者:
作者单位:

上海大学 通信与信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391.4??

基金项目:


PCBA Defect Detection Based on Unsupervised Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表面贴装技术是制造电子设备最常见的工业方法,它将电子元件直接安装在印刷电路板的表面;这些设备在制造过程中出现的安装缺陷会严重影响设备的性能。因此,生产的电子设备在投入使用前需要完成印刷电路板组装质量测试。文章提出了一种基于无监督学习的自动化电路板安装缺陷检测方法。该方法一方面具有学习能力,另一方面又不依赖于大型数据集,适用于检测印刷电路板中的电子元件安装缺陷。实验表明,该缺陷检测方法准确率达0.86,召回率为0.93。与其他检测方法相比,执行速度也有所提高,满足工业实际应用需求,具有实际应用价值。

    Abstract:

    Surface Mount Technology is the most common industrial method for manufacturing electronic devices, which involves mounting electronic components directly onto the surface of a Printed Circuit Board. Installation defects or faults that occur during the manufacturing process of these devices can potentially cause harm in certain situations. Therefore, the quality of the PCB assembly must be tested before the electronic devices are put into use. This paper proposes an automatic integrated change detection method based on unsupervised learning. This method not only has the capability to learn but also does not rely on large datasets, making it suitable for detecting installation defects of electronic components on PCBs. Experiments show that the defect detection accuracy is about 0.86, and the recall rate is 0.93. Compared to other detection methods, the execution speed is also improved, meeting the goals of practical industrial applications and achieving real application value in the industry.

    参考文献
    相似文献
    引证文献
引用本文

卞钟晗,张恒,陆小锋,刘学锋,陆风行.基于无监督学习的电路板安装缺陷检测计算机测量与控制[J].,2025,33(12):28-33.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-13
  • 最后修改日期:2024-12-31
  • 录用日期:2025-01-02
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码