钢铁表面缺陷识别语义分割模型知识蒸馏优化
DOI:
CSTR:
作者:
作者单位:

1.中国航发哈尔滨东安发动机有限公司;2.重庆大学机械与运载工程学院

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:


Knowledge Distillation Optimization of Semantic Segmentation Model for Steel Surface Defect Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在语义分割模型基础上,提出一种以逐通道蒸馏的方式迁移改进复杂网络的缺陷识别知识到简单网络中的方法。该方法以师生网络为基础,在训练过程中让学生网络模型模仿教师网络模型的缺陷识别方式,使用KL散度衡量差异,共同优化后的学生网络模型具有轻量化的模型结构和较高的缺陷识别能力。在钢铁表面缺陷数据集上的实验验证表明,蒸馏优化后ResUnet + ConvNeXt-T语义分割基准网络对缺陷分割的平均相似系数mDice从0.7503提高到0.7711,学生网络模型的推理速度比教师网络模型提升了约77%,有效的提高了轻量化的学生网络模型对钢铁表面缺陷的识别能力。

    Abstract:

    On the basis of semantic segmentation models, a method is proposed to transfer and improve defect recognition knowledge from complex networks to simple networks through channel wise distillation. This method is based on the teacher-student network, and during the training process, the student network model imitates the defect recognition method of the teacher network model. The KL divergence is used to measure differences, and the jointly optimized student network model has a lightweight model structure and high defect recognition ability. The experimental verification on the dataset of steel surface defects shows that after distillation optimization, the average similarity coefficient mDice of the ResUnet+ConvNeXt-T semantic segmentation benchmark network for defect segmentation is increased from 0.7503 to 0.7711. The inference speed of the student network model is improved by about 77% compared to the teacher network model, effectively improving the recognition ability of lightweight student network models for steel surface defects.

    参考文献
    相似文献
    引证文献
引用本文

薛殿龙,李琳,周子杰,常永胜,向勇,陈德阳.钢铁表面缺陷识别语义分割模型知识蒸馏优化计算机测量与控制[J].,2025,33(12):183-188.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2025-01-14
  • 录用日期:2025-01-15
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码