偏度特征约束下的机载激光雷达点云数据分类

2023,31(9):235-241
刘正坤, 林思娜, 吴丹妮
广州中科智云科技有限公司
摘要:机载激光雷达获得的点云具有密度低、分布不均匀、分支结构不清晰等特点,其动态扫描过程的数据特征动态偏差很小,无法提取有效的数据去噪特征。为此提出偏度特征约束下的机载激光雷达点云数据实时分类方法。该方法将扫描获取的点云大容量实时数据引入在正态分布中,利用衡量对称性正态分布的关键度量偏度特征作为动态特征分界约束,完成数据滤波;提取机载激光雷达点云特征,从中选取优质特征,以此构建SVM分类器。点云大容量数据训练结果即为最终的分类结果。实验结果表明,所提方法分类的准确性与效率较高。
关键词:机载激光雷达;点云数据;偏度特征;数据分类;SVM分类器;

Classification of Airborne Lidar Point Cloud Data with Skewness Feature Constraint

Abstract:The?point?cloud?obtained?by?airborne?lidar?has?the?characteristics?of?low?density,?uneven?distribution,?unclear?branch?structure,?etc.?The?dynamic?deviation?of?data?features?in?the?dynamic?scanning?process?is?very?small,?and?it?is?unable?to?extract?effective?data?denoising?features.?Therefore,?a?real-time?classification?method?of?airborne?lidar?point?cloud?data?under?the?constraint?of?skewness?features?is?proposed.?In?this?method,?the?large?capacity?real-time?data?of?point?cloud?obtained?by?scanning?is?introduced?into?the?normal?distribution,?and?the?key?metric?skewness?feature?measuring?the?symmetry?of?the?normal?distribution?is?used?as?the?dynamic?feature?boundary?constraint?to?complete?the?data?filtering;?The?point?cloud?features?of?airborne?lidar?are?extracted,?from?which?high-quality?features?are?selected?to?build?a?SVM?classifier.?The?final?classification?result?is?the?result?of?point?cloud?high-capacity?data?training.?The?experimental?results?show?that?the?proposed?method?has?high?accuracy?and?efficiency.
Key words:Airborne Lidar;Point cloud data;Skewness charateristics;Data classification;SVM classifier
收稿日期:2022-11-25
基金项目:13763378985
     下载PDF全文